amibroker

HomeKnowledge Base

Handling limit orders in the backtester

In order to simulate limit orders in backtesting it is necessary to check in the code if Low price of the entry bar is below the limit price we want to use. The following example shows an entry signal based on Close price crossing over 100-period simple moving average. The position is opened on the next bar if price drops 1% below the Close of signal bar.

BuySignal CrossCloseMA(Close100 ) );

// buy on the next bar
Buy RefBuySignal, -1);
BuyLimitPrice RefClose, -1) * 0.99;

// now we check if limit was hit
Buy Buy AND BuyLimitPrice;

// if Open price is below the limit, then we use Open for entry
BuyPrice MinOpenBuyLimitPrice )

If we want the order to be valid for more than one bar, then we can use Hold function for this purpose:

BuySignal CrossCloseMA(Close100 ) );

// buy on the next bar
Buy RefBuySignal, -1);
BuyLimitPrice ValueWhen(BuySignalClose) * 0.99;

// now we check if limit was hit
Buy HoldBuy) AND BuyLimitPrice;

// if Open price is below the limit, then we use Open for entry
BuyPrice MinOpenBuyLimitPrice )

In a portfolio-level backtest we usually advocate against using limit orders. Why? Simply because we may not have enough cash in your account to place limit orders for all possible entry candidates. If your trading system generates 100 possible entries, you would need to place 100 limit orders only to find out that eventually only few of them fired. With limited buying power, we may need to place limit orders only for the top N-scored tickers that have generated BuySignal and skip the others. To simulate the situation when we only place small set of limit orders for top ranked stocks we can use new ranking functionalities introduced in AmiBroker 5.70. Knowing the rank at this stage is required if we only want to allow orders for top-scored tickers. Let us say that we prefer symbols with smallest RSI values.

The code would look the following way: Formula first generates a ranking for all tickers included in the test (below example uses Watchlist 0), then when testing individual symbols – checks the pre-calculated rank and generates Buy signal based on that reading.

// we run the code on WatchList 0
List = CategoryGetSymbolscategoryWatchlist);
SetOption("MaxOpenPositions"3);

if ( 
Status("stocknum") == // Generate ranking when we are on the very first symbol
{
     
StaticVarRemove"values*" );

     for ( 
0; ( Symbol StrExtract( List, ) )  != "";  n++    )
     {
         
SetForeign symbol );

         
// value used for scoring
         
values 100 RSI();
         
RestorePriceArrays();
         
StaticVarSet (  "values"  +  symbolvalues );
         
_TRACEsymbol );
     }

     
StaticVarGenerateRanks"rank""values"01224 );
}

symbol Name();
values StaticVarGet "values" +  symbol );
rank StaticVarGet "rankvalues" +  symbol );

PositionScore values;

BuySignal CrossCloseMA(Close100 ) );

// buy on the next bar
Buy RefBuySignal, -1);
BuyLimitPrice RefClose, -1) * 0.999;

// now we check if limit was hit for the symbols ranked as top 3
Buy Buy AND BuyLimitPrice AND rank <= 3;
BuyPrice MinOpenBuyLimitPrice );

// sample exit rules - 5 - bar stop
Sell 0;
ApplyStopstopTypeNBarstopModeBars51)

Detailed description of the ranking functionality used above is available in the manual at: http://www.amibroker.com/guide/h_ranking.html

How to display indicator values in the backtest trade list

Backtesting engine in AmiBroker allows to add custom metrics to the report, both in the summary report and in the trade list. This is possible with Custom Backtester Interface, which allows to modify the execution of portfolio-level phase of the test and (among many other features) adjust report generation.

Due to the fact that the report generation occurs in 2nd phase of the test, when the backtester works on ~~~EQUITY ticker, we can not refer directly to given indicators. For example, to display ATR values – calling ATR() function directly is not enough, because we want to see ATR values of the traded symbol, while in portfolio-phase of the test we are no longer working on that symbol’s quotes.

So, we need to:

  1. store the values of indicators in static variables in the 1st phase of the test (when individual symbols are processed). This can be done with static variables, creating separate static variable for each symbol
  2. read stored values once the backtester reaches the portfolio phase of the test.

The following formula shows how this can be coded. The formula below displays the value of ATR indicator for the entry bar of given trade:

SetCustomBacktestProc"" );

if ( 
Status"action" ) == actionPortfolio )
{
    
bo GetBacktesterObject();
    
// run default backtest procedure without generating the trade list
    
bo.BacktestTrue );

    
// iterate through closed trades
    
for ( trade bo.GetFirstTrade( ); tradetrade bo.GetNextTrade( ) )
    {
        
// read ATR values and display as custom metric
        
symbolATR StaticVarGettrade.Symbol "ATR" );
        
trade.AddCustomMetric"Entry ATR"LookupsymbolATRtrade.EntryDateTime ) );
    }

    
// iterate through open positions
    
for ( trade bo.GetFirstOpenPos( ); tradetrade bo.GetNextOpenPos( ) )
    {
        
// read ATR values and display as custom metric
        
symbolATR StaticVarGettrade.Symbol "ATR" );
        
trade.AddCustomMetric"Entry ATR"LookupsymbolATRtrade.EntryDateTime ) );
    }

    
// generate trade list
    
bo.ListTrades( );
}

// your trading system here
Buy CrossMACD(), Signal() );
Sell CrossSignal(), MACD() );

// assign indicator values to ticker-specific variables
StaticVarSetName() + "ATR"ATR15 ) )

Troubleshooting procedure when backtest shows no trades

When we run backtest and get no results at all – there may be several reasons of such behaviour. The main potential causes are the following:

  1. our system does not generate any entry signals within the tested range
  2. our settings do not allow the backtester to take any trades

To verify if we are getting any signals – the first thing to do is to run a Scan. This allows us to check if we are getting any Buy or Short signals at all. If there are none, then we need to check the formula and make sure that data interval we are working on are correct (in Periodicity in Analysis->Settings->General).

If Scan works fine and returns trading signals, but backtester still does not produce any output, it usually means that the settings are wrong, i.e. the constraints set in the settings prevent trades from being opened mainly because requested position size is too big or too small.

To check what is going on, it is best to switch Report mode to Detailed log and re-run backtest.

Report - Detailed log

Once you run backtest in Detailed Log mode you will be able to find out exact reasons why trades can not be opened for each and every bar:

Detailed log output

Using the following settings may be helpful to minimize chances of not entering trades because of various constraints:

In Analysis->Settings, General tab:

  1. check if Initial Equity is high enough
  2. set Periodicity to the appropriate interval
  3. Allow position size shrinking – turn it On
  4. Round Lot Size – set it to 0
  5. in Min. Shares box enter 0.01
  6. in Min. pos. value enter 0
  7. Account Margin – set it to 100

Settings - General

in Portfolio tab, enter 0 in Limit trade size as % of entry bar volume box.

Settings - Portfolio

How to exclude top ranked symbol(s) in rotational backtest

Rotational trading is based on scoring and ranking of multiple symbols based on user-defined criteria. For each symbol a user-definable “score” is assigned on bar by bar basis. Then, each bar, symbols are sorted according to that score and N top ranked symbols are bought, while existing positions that don’t appear in top N rank are closed.

Sometimes however, we may want to exclude the highest ranking symbol (or a couple of them) from trading. The code below shows how to do that using custom backtester.

ExcludeTopN 1// how many top positions to exclude
SetCustomBacktestProc("");

if ( 
Status"action" ) == actionPortfolio )
{
    
bo GetBacktesterObject();
    
bo.PreProcess();

    for ( 
bar 0bar BarCountbar++ )
    {
        
Cnt 0;
        for ( 
sig bo.GetFirstSignalbar ); sigsig bo.GetNextSignalbar ) )
        {
            if ( 
Cnt ExcludeTopN )
                
sig.Price = -1// exclude

            
Cnt++;
        }

        
bo.ProcessTradeSignalsbar );
    }

    
bo.PostProcess();
}

EnableRotationalTradingTrue );

SetOption"MaxOpenPositions");
SetOption"WorstRankHeld"10 );
SetPositionSize20spsPercentOfEquity );
PositionScore RSI14 )

The code is pretty straightforward mid-level custom backtest loop but it uses one trick – setting signal price to -1 tells AmiBroker to exclude given signal from further processing. Note also that signals retrieved by GetFirstSignal / GetNextSignal are already sorted, so the highest ranked signal appears first in the list.

Using price levels with ApplyStop function

ApplyStop function by default requires us to provide stop amount (expressed in either dollar or percentage distance from entry price). Therefore, if we want to place stop at certain price level, then we need to calculate the corresponding stop amount in our code.

This example shows how to place stops at previous bar Low (for long trades) and previous bar High (for short trades).

Stop amount parameter is simply the distance between entry price and desired trigger price (exit point). For long trade it is entry price minus stop level, while for short trade it is trigger (exit) price minus entry price. Additionally we may check if calculated distance is at least 1-tick large. We can distinguish between long and short entry by checking if one of entry signals is present (if a Buy signal is active then it is long entry, otherwise short). We only need to take care about the fact that if we are using trade delays we need to get delayed Buy signal as shown in the code below:

TradeDelay 1// set it to 0 for no delays

SetTradeDelaysTradeDelayTradeDelayTradeDelayTradeDelay );
TickSize 0.01;

// sample entry rules
Buy CrossMACD(), Signal() );
Short CrossSignal(), MACD() );
Sell Cover 0// no other exit conditions, just stops

BuyPrice SellPrice ShortPrice CoverPrice Close;

// define stop level
stopLevelLong RefL, -); // use previous bar low
stopLevelShort RefH, -); // use previous bar high

// calculate stop amount
stopAmountLong BuyPrice stopLevelLong;
stopAmountShort stopLevelShort ShortPrice;

// make sure stop-amount is at least one tick
stopAmountLong MaxTickSizeBuyPrice stopLevelLong );
stopAmountShort MaxTickSizestopLevelShort ShortPrice );

// assign stop amount conditionally by checking if there is a Buy signal on given bar
IsLong RefBuy, -TradeDelay );
stopAmount IIfIsLongstopAmountLongstopAmountShort );
ApplyStopstopTypeLossstopModePointstopAmountTrue )

Per-symbol profit/loss in a portfolio backtest

Backtesting engine in AmiBroker allows to add custom metrics to the report, both in the summary report and in the trade list. This is possible with Custom Backtester Interface, which allows to modify the execution of portfolio-level phase of the test and (among many other features) adjust report generation.

The example presented below shows how to retrieve individual profit/loss figures for each traded symbol in a portfolio test and add the results as custom metrics to the report. The code performs backtest, then iterates through the list of trades and stores each symbol profit in separate variables. Variables are created with VarSet function, which allows to build variable names dynamically, based on the symbol name. There are 2 variables generated per symbol, one holding profit for long trades and one for short trades. In the last part the code reads the created variables and adds input into the backtest report.

function ProcessTradetrade )
{
  global 
tradedSymbols;
  
symbol trade.Symbol;
  
//
  
if( ! StrFindtradedSymbols"," symbol "," ) )
  {
    
tradedSymbols += symbol ",";
  }
  
//
  // HINT: you may replace it with GetPercentProfit if you wish
  
profit trade.GetProfit();
  
//
  
if( trade.IsLong() )
  {
      
varname "long_" symbol;
      
VarSetvarnameNzVarGetvarname ) ) + profit );
  }
  else
  {
      
varname "short_" symbol;
      
VarSetvarnameNzVarGetvarname ) ) + profit );
  }
}
//
SetCustomBacktestProc"" );
//
/* Now custom-backtest procedure follows */
//
if ( Status"action" ) == actionPortfolio )
{
    
bo GetBacktesterObject();
    
//
    
bo.Backtest(); // run default backtest procedure
    //
    
tradedSymbols ",";
    
//
    //iterate through closed trades
    
for ( trade bo.GetFirstTrade( ); tradetrade bo.GetNextTrade( ) )
    {
        
ProcessTradetrade );
    }
    
//
    //iterate through open positions
    
for ( trade bo.GetFirstOpenPos( ); tradetrade bo.GetNextOpenPos( ) )
    {
        
ProcessTradetrade );
    }
    
//
    //iterate through the list of traded symbols and generate custom metrics
    
for ( 1; ( sym StrExtracttradedSymbols) ) != ""i++ )
    {
        
longprofit VarGet"long_" sym );
        
shortprofit VarGet"short_" sym );
        
allprofit Nzlongprofit ) + Nzshortprofit );
        
// metric uses 2 decimal points and
        // 3 (calculate sum) as a "combine method" for walk forward out-of-sample
        
bo.AddCustomMetric"Profit for " symallprofitlongprofitshortprofit2);
    }
}
//
SetOption"MaxOpenPositions"10 );
//
Buy CrossMACD(), Signal() );
Sell CrossSignal(), MACD() );
Short Sell;
Cover Buy;
SetPositionSize10spsPercentOfEquity 

Once we run the Backtest, we will get the following output in the report, showing individual profit/loss figures for each symbol in test.

Per-symbol profit

If you prefer percent profits instead of dollar profits, just replace GetProfit() call with GetPercentProfit().

Position sizing based on risk

One of most popular position sizing techniques is Van Tharp risk-based method. Van Tharp defines risk as the maximum amount that can be lost in a trade. Typically you limit your loses by setting up a maximum loss stop.

The amount risked should not be confused with amount invested. If your stop is 15% away from entry price, in worst case you risk losing 15% of the position size (amount invested), not the entire amount. So risk practically means the amount of maximum loss stop.

Now, imagine that we only allow to lose 1% of entire portfolio equity in single trade. If our stop is placed 15% away, it means that to risk just 1% of entire equity we can put 1/15 part of our available equity into this trade. As we can see desired position size is inversely proportional to stop amount.

Buy CrossCMAC20 ) ); // some trading rules
Sell CrossMAC20 ), );
//
PositionRisk 1// how much (in percent of equity) we risk in single position
TradeRisk 15// trade risk in percent equals to max. loss percentage stop
PctSize 100 PositionRisk TradeRisk;
//
ApplyStopstopTypeLossstopModePercentTradeRiskTrue );
SetPositionSizePctSizespsPercentOfEquity )

Let us see how it works, say we have equity of $60,000, and we only want to risk 1% in single trade ($600). We set our protective stop to 15%. If stock entry price is say $20, we would put our protective stop at $20-15% = $17, so we will risk $3 per share. Given the fact that we want to risk only $600 in that trade, we could buy 200 shares (position risk 200 * $3 = $600). 200 shares @ $20 each gives position value of $4000. $4000 represents 6.667% of $60,000 and this is actual percentage position size we would open. As we can clearly see 6.667% is what we would get if we divide 1 (percent position risk) by 15 (percent loss amount): 1/15 = 6.667%

Instead of setting our stop as fixed percentage, we can use more sophisticated methods. For example we can adjust our maximum loss (so the risk) dynamically, using average true range, so it will get wider if stock is volatile and narrower if stock prices move in a narrow range. Say we want to set our stop to twice the amount of ATR( 20 ) at the entry bar and risk 3% of portfolio equity in a single trade:

Buy CrossCMAC20 ) ); // some trading rules
Sell CrossMAC20 ), );
//
RiskPerShare =  ATR20 );
ApplyStopstopTypeLossstopModePointRiskPerShareTrue );
//
// risk 3% of entire equity on single trade
PositionRisk 3;
//
// position size calculation
PctSize =  PositionRisk BuyPrice RiskPerShare;
SetPositionSizePctSizespsPercentOfEquity )

This time our maximum loss (so the risk per share) is expressed in dollars not in percents. Let us verify the above calculation. Assume that our equity is $90,000, stock price is $18, ATR(20) is $1. Now risk per share (the stop amount) equals 2 * $1 = $2, so our calculated position size (required % of equity) from the above formula would be:

PctSize = 3 * $18 / $2 = 27%

27% of $90,000 means trade size of $24,300, i.e. 1350 shares (@ $18 each). Since we risk $2 on each share, the total risk is $2 * 1350 shares = $2700, which is exactly 3% of our total equity ($90,000 * 3%).

In case of futures, we would need to take into account the fact that our position size depends on Margin Deposit, while the stop size (expressed in dollars) depends on the Point Value, so the position sizing formula would need to be modified.

Buy CrossCMAC20 ) ); // some trading rules
Sell CrossMAC20 ), );
//
RiskPerContract ATR20 );
ApplyStopstopTypeLossstopModePointRiskPerContractTrue );
//
// risk 1% of entire equity on single trade
PositionRisk 1;
PctSize =  PositionRisk MarginDeposit  / ( RiskPerContract PointValue );
SetPositionSizePctSizespsPercentOfEquity )

Let us assume that we are trading a contract with $5000 margin deposit, point value $50, our equity is 1 million and ATR(20) is equal 5 big points. Risk per contract is then 10 big points. Now the above formula would give us:

PctSize = 1% * $5000 / ( 10 * $50 ) = 10%

10% of our 1 million equity is $100K, which allows us to buy 20 contracts (20 * $5000 each). Since our risk is 10 big points and each big point has a value of $50 we are risking 10 * $50 = $500 per contract. We have 20 contracts so entire position represents a risk 20 * $500 = $10,000 which is 1% of our 1 million equity.

How generate backtest statistics from a list of historical trades stored in a file

Apart from testing mechanical rules based on indicator readings, backtester can also be used to generate all statistics based on a list of pre-defined trades, list of our real trades from the past or a list of trades generated from another software.

To achieve that, first we need to create an input information for AmiBroker where it could read the trades from. A convenient way would be to use an input file in text format, which could store information about trades, including the type of transaction (buy or sell), dates and position sizes. A sample input file may look like this:
Symbol,Trade,Date,Price,Shares
AAME,Buy,2000-04-06,2.66,375.94
AAME,Buy,2000-04-10,2.66,378.922
AAPL,Buy,2000-04-27,31.23,32.0862
AAON,Buy,2000-04-06,3.19,313.48
ABAX,Buy,2000-04-26,7.67,132.101
AB,Buy,2000-04-25,20.23,50.0337
A,Buy,2000-04-27,84.66,11.8362
AAME,Buy,2000-05-10,2.6,373.627
ABCB,Buy,2000-05-11,6.08,159.406
A,Buy,2000-05-15,82.27,11.736
AAON,Buy,2000-05-18,3.84,246.242
AB,Buy,2000-05-15,20.84,46.3303
ABAX,Buy,2000-05-18,5.84,161.913
ABCB,Buy,2000-05-15,6.08,158.803
AAME,Buy,2000-05-19,2.6,363.763
AB,Buy,2000-06-05,22.78,43.3501
ABC,Buy,2000-05-18,4.49,210.595

We can read and backtest such input with the formula presented below. It is important to remember that this particular code can work with input files of identical format (columns in identical order, signals specified with exact Buy / Sell words, position sizes specified as shares). Changing the input format would also require to update the formula to match the input.

Path to the file is specified in the very first line (note that double backslashes need to be used).

The formula reads the file line by line, then on a bar with matching date/time it generates a new Buy or Sell signal that is then combined with existing signals (coming from other bars).

file "C:\\TEMP\\trades.csv"// change this to real location of your data file
dt DateTime();
//
// Initialize variables
Buy Sell possize 0;
//
fh fopenfile"r" );
//
if( fh )
 {
     while( ! 
feoffh ) )
     {
         
line fgetsfh );
         
// get the ticker symbol from the file
         
sym StrExtractline);
         
// if ticker matches current symbol
         
if ( Name() == sym )
         {
             
// extract data from line of text
             
trade StrExtractline);
             
trade_datetime StrToDateTimeStrExtractline) );
             
price StrToNumStrExtractline) );
             
shares StrToNumStrExtractline) );
             
//
             
if ( trade == "Buy" )
             {
                 
newbuy dt == trade_datetime;
                 
Buy Buy OR newbuy// combine previous buy signals with new
                 
BuyPrice IIfnewbuypriceBuyPrice );
                 
possize IIfnewbuysharespossize );
             }
             
//
             
if ( trade == "Sell" )
             {
                 
newsell dt == trade_datetime;
                 
Sell Sell OR newsell// combine previous sell signals with new
                 
SellPrice IIfnewsellpriceSellPrice );
             }
         }
     }
     
//
     
fclosefh );
 }
 else
 {
     
Error"ERROR: file can not be open" );
 }
//
SetPositionSizepossizespsShares )

Closing trades in delisted symbols

When we perform historical tests on databases that contain delisted symbols – we may encounter a situation, where there are open positions in those tickers remaining till the very end of the backtest, distorting the results (as these open positions will reduce remaining maximum open positions limit for the other symbols).

Here is an easy technique which allows to force closing positions in those symbols on the very last bar traded for given symbol. The code below just adds an additional Sell signal on the last available bar in the database for this symbol:

bi BarIndex();
exitLastBar bi == LastValuebi );
Sell /*your regular sell rules*/ OR exitLastBar

If we are using 1-bar trade delays in our backtesting settings, then the exit signal would need to be triggered one bar in advance (so the delayed signal could still be traded on the last bar) and the code would look like this:

SetTradeDelays(1,1,1,1);
bi BarIndex();
exitLastBar bi == LastValuebi );
Sell /*your regular sell rules*/ OR exitLastBar

There is also a dedicated field in Symbol->Information window which allows to store the delisting date directly in the database. AmiBroker allows to read that field from AFL code using GetFnData() function. If we have this field populated for delisted symbols for our symbols, then the code forcing exits on delisting date would be:

exitLastBar datetime() >= GetFnData("DelistingDate");
Sell /*your regular sell rules*/ OR exitLastBar

What is important, this approach would work also, when Pad and Align to reference symbol feature is used in Analysis window settings.

In order to populate Delisting Date field in the database, we can enter the dates manually through Symbol->Information window or use ASCII importer to import the information from the input text files. More details about ASCII importing can be found at:
http://www.amibroker.com/guide/d_ascii.html

How to identify signal that triggered entry/exit if multiple signals are used

When designing a trading system we often need to quickly identify which of the rules used in the code triggered the particular Buy or Sell signal. Here are some techniques that may be useful in such identification.

For the purpose of this demonstration let us use a sample formula, where the Buy signal may be triggered by one of three independent rules:

Buy1 CrossMACD(), Signal() );
Buy2 CrossCloseMA(Close50) );
Buy3 CrossRSI(), 30 );
//
Buy buy1 OR Buy2 OR Buy3

To determine which of those three rules generates the entry signal, we can either visualize signals in the chart or use Exploration feature of the Analysis window.

In case a custom chart is used, we can do the following:

  1. display the signal in custom chart title
  2. use PlotShapes function to indicate certain buy rule
  3. use PlotText to add pre-defined text labels.

The formula below shows sample implementations of these three techniques. This is actually one of many ways that can be used for coding such custom output:

Buy1 CrossMACD(), Signal() );
Buy2 CrossCloseMA(Close,50) );
Buy3 CrossRSI(), 30 );
//
Buy buy1 OR Buy2 OR Buy3;
//
// Standard price plot
PlotClose"Close"colorBlackstyleCandle);
//
// Custom title definition
BuyReason EncodeColor(colorGreen ) + WriteIf(Buy,"Buy signals: ","")
           + 
WriteIf(buy1"Buy1 """) +WriteIf(buy2"Buy2""")
           + 
WriteIf(buy3"Buy3""");
Title StrFormat"{{NAME}} - {{INTERVAL}} {{DATE}} Close %g ",Close ) +BuyReason;
//
// Plotshapes function calls
PlotShapes(Buy*shapeUpArrowcolorGreen0Low);
PlotShapes(Buy1*shapedigit1colorGreen0Low,-30);
PlotShapes(Buy2*shapedigit2colorGreen0Low,-45);
PlotShapes(Buy3*shapedigit3colorGreen0Low,-60);
//
//
// Custom text labels displayed with PlotText
if( SelectedValue(Buy) )
{
   
SelectedValueBarIndex() );
   
maxy Status("axismaxy");
   
miny Status("axisminy");
   
0.15 * (maxy miny) + miny;
   
text WriteIf(buy1], "\nBuy1 """)
          +  
WriteIf(buy2], "\nBuy2 """)
          +  
WriteIf(buy3], "\nBuy3 """);
   
PlotTexttexti,  ycolorWhitecolorGreen );

The chart below shows how to use signal visualization technique implemented in the formula.

Chart Example 1

The other method is to use the Exploration feature of Analysis window that allows to generate tabular output, where we can display the values of selected variables. The detailed tutorial explaining this feature is available at:
http://www.amibroker.com/guide/h_exploration.html

For the discussed purpose of tracking the signals that triggered entry or exit, we can add the following code to our trading system to show the values of each Buy1, Buy2, Buy3 variables:

Filter Buy;
AddColumnBuy1"Buy1"1colorDefaultIIfBuy1colorGreencolorDefault ) );
AddColumnBuy2"Buy2"1colorDefaultIIfBuy2colorGreencolorDefault ) );
AddColumnBuy3"Buy3"1colorDefaultIIfBuy3colorGreencolorDefault ) )

Exploration Signal tracking

With regard to exit signals they can be visualized in a similar way as shown above, but there is also an additional functionality in the backtester, which allows to indicate the exit condition directly in the trade list. This can be done by assigning values higher than 1 (but not more than 127) to Sell variable.

Sell1 CrossSignal(), MACD() );
sell2 CrossMA(Close50), Close );
Sell Sell1 10 Sell2 20

The above expression will result in assigning value of 10 to Sell variable for the bars where Sell1 is true, 20 for the bars where Sell2 is true and 30 for the bars where both conditions are true.

These values will be indicated in the trade list:

Backtest exit signal tracking

It is worth to mention that values 1 to 9 are reserved for built-in stops and used internally by the backtester, and have special meaning:

  1. normal exit
  2. maximum loss stop
  3. profit target stop
  4. trailing stop
  5. n-bar stop
  6. ruin stop (losing 99.96% of entry value)
  7. reserved
  8. reserved
  9. reserved

Note also that you must not assign value greater than 127 to Sell or Cover variable. If you assign bigger value it will be truncated.

This is further discussed here: http://www.amibroker.com/guide/afl/equity.html

« Previous PageNext Page »